4. Linear Models
Overview
- 
    4.1 Why normal distributions are normal - 
        4.1.1 Normal by addition 
- 
        4.1.2 Normal by multiplication 
- 
        4.1.3 Normal by log-multiplication 
- 
        4.1.4 Using Gaussian distributions - 
            4.1.4.1 Ontological justification 
- 
            4.1.4.2 Epistemological justification - 
                Gaussian distribution 
 
- 
                
 
- 
            
 
- 
        
- 
    4.2 A language for describing models - 
        4.2.1 Re-describing the globe tossing model - 
            From model definition to Bayes’ theorem 
 
- 
            
 
- 
        
- 
    4.3 A Gaussian model of height - 
        4.3.1 The data - 
            Data frames 
- 
            Index magic 
 
- 
            
- 
        4.3.2 The model - 
            Independent and identically distributed 
- 
            A farewell to epsilon 
- 
            Model definition to Bayes’ theorem again 
 
- 
            
- 
        4.3.3 Grid approximation of the posterior distribution 
- 
        4.3.4 Sampling from the posterior - 
            Sample size and the normality of σ’s posterior 
 
- 
            
- 
        4.3.5 Fitting the model with map- 
            Start values for map
- 
            How strong is a prior? 
 
- 
            
- 
        4.3.6 Sampling from a mapfit- 
            Under the hood with multivariate sampling 
- 
            Getting σ right 
 
- 
            
 
- 
        
- 
    4.4 Adding a predictor - 
        What is “regression”? 
- 
        4.4.1 The linear model strategy - 
            4.4.1.1 Likelihood 
- 
            4.4.1.2 Linear model - 
                Nothing special or natural about linear models 
- 
                Units and regression models 
 
- 
                
- 
            4.4.1.3 Priors - 
                What’s the correct prior? 
 
- 
                
 
- 
            
- 
        4.4.2 Fitting the model - 
            Everything that depends upon parameters has a posterior distribution 
- 
            Embedding linear models 
 
- 
            
- 
        4.4.3 Interpreting the model fit - 
            What do parameters mean? 
- 
            4.4.3.1 Tables of estimates 
- 
            4.4.3.2 Plotting posterior inference against the data 
- 
            4.4.3.3 Adding uncertainty around the mean 
- 
            4.4.3.4 Plotting regression intervals and contours - 
                Overconfident confidence intervals 
- 
                How linkworks
 
- 
                
- 
            4.4.3.5 Prediction intervals - 
                Two kinds of uncertainty 
- 
                Rolling your own sim
 
- 
                
 
- 
            
 
- 
        
- 
    4.5 Polynomial regression - 
        Linear, additive, funky 
- 
        Converting back to natural scale 
 
- 
        
- 
    4.6 Summary